
Many slides here were adapted from CMU 16-385

Question: what makes an object “segmentable”?

Objects with similar motion or change in appearance are
grouped together

Common Region/Connectivity

Connected objects are grouped together

Continuity Principle

A

B

C

X

A

B

C

X

Features on a continuous curve are grouped together

Symmetry Principle

Completion

Illusory or subjective contours are perceived

What is a “good”
segmentation??

First idea: Compare to human “ground truth”

• http://www.eecs.berkeley.edu/Research/Projects/CS/
vision/grouping/resources.html

No objective
definition of
segmentation!

Subject 1
Subject 2

Subject 3

Evaluation: Intersection-over-Union (IoU)
with ground truth

Second idea: Superpixels

• Let’s not even try to compute a “correct” segmentation
• Let’s be content with an oversegmentation in which each region

is very likely (formal guarantees are hard) to be uniform

Third idea: Multiple segmentations

• Generate many segmentations of the same image
• Even though many regions are “wrong”, some

consensus should emerge

Example: Improving Spatial Support for Objects via Multiple Segmentations
Tomasz Malisiewicz and Alexei A. Efros. British Machine Vision Conference
(BMVC), September, 2007.

Main approaches

• Spectral techniques
• Segmentation as boundary detection
• Graph-based techniques
• Clustering (K-means and probabilistic)
• Mean shift

Nodes: pixels

Edges: Constraints between
neighboring pixels

Images can be viewed as graphs

Graph-view of segmentation problem
Segmentation is node-labeling

Given: pixel values and neighborhoods,
Decide:
• which nodes to label as

foreground/background
Or:
• which nodes to label as seams
… using graph algorithms

Nodes: pixels

Edges: Constraints between
neighboring pixels

Method Labeling problem Algorithm Intuition

Intelligent
scissors label pixels as seams

Dijkstra’s shortest
path (dynamic
programming)

short path is a
good boundary

GrabCut label pixels as
foreground/background

max-flow/min-cut
(graph cutting)

good region has
low cutting cost

Today we will cover:

Graph-view of segmentation problem

Mortenson and Barrett (SIGGRAPH 1995)
(you can tell it’s old from the paper’s low quality teaser figure)

Intelligent scissors

Problem statement:
Given two seed points, find a good
boundary connecting them

Challenges:
• Make this real-time for interaction
• Define what makes a good boundary

Nodes: pixels

Edges: Constraints between
neighboring pixels

Graph-view of this problem

Images can be viewed as graphs

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

1. Assign weights (costs) to edges

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?
• Dijkstra’s algorithm (dynamic

programming)

Initialize, given seed s (pixel ID):
• cost(s) = 0 % total cost from seed to this point
• cost(!s) = big
• A = {all pixels} % set to be expanded
• prev(s)=undefined % pointer to pixel that leads to q=s

Precompute cost2(q, r) % cost between q to neighboring pixel r

Loop while A is not empty

1.q = pixel in A with lowest cost

2.Remove q from A

3.For each pixel r in neighborhood of q that is in A

a)cost_tmp = cost(q) + cost2(q,r) %this updates the costs

b)if (cost_tmp < cost(r))
i.cost(r) = cost_tmp
ii. prev(r) = q

Dijkstra’s shortest path algorithm

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?
• Dijkstra’s algorithm (dynamic

programming)

How should we select the edge
weights to get good boundaries?

Selecting edge weights

Define boundary cost between
neighboring pixels:

1. Lower if an image edge is present
(e.g., as found by Sobel filtering).

2. Lower if the gradient magnitude at
that point is strong.

3. Lower if gradient is similar in
boundary direction.

Gradient magnitude

Edge image

Pixel-wise cost
2
8

Selecting edge weights

Nodes: pixels

Edges: Constraints between
neighboring pixels

Segmentation using graph cuts

Remember: Graph-based view of images

Given its intensity
value, how likely is a

pixel to be foreground
or background?

Given their intensity values,
how likely are two neighboring

pixels to have two labels?

Markov Random Field (MRF)
Assign foreground/background labels based on:

åå
Î

=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy

What kind of cost functions
would you use for GraphCut?

+

åå
Î

=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy

source (foreground label)

sink (background label)

cost to assign to
foreground

cost to assign to background

cost to split nodes

Solving MRFs using max-flow/min-cuts (graph cuts)

+

åå
Î

=
edgesji

ji
i

i datayydataydataEnergy
,

21),;,(),;(),;(qyqyqy

source (foreground label)

sink (background label)

cost to assign to
foreground

cost to assign to background

cost to split nodes

Solving MRFs using max-flow/min-cuts (graph cuts)

+

Graph-cuts segmentation

1. Define graph
– usually 4-connected or 8-connected

2. Set weights to foreground/background

3. Set weights for edges between pixels

4. GraphCut: Apply min-cut/max-flow algorithm

user specified box

iterated graph cut

user edit

output

Iteration can be interactive

Examples

Graph-cuts are a very general, very useful tool

• denoising
• stereo
• texture synthesis
• segmentation
• classification
• recognition
• …

